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We consider plane waves in a conducting two-component medium in the presence of an 
external magnetic field. The medium consists of an elastic and a fluid component (po- 
rous medium with an elastic skeleton. where the pores are filled with a viscous compress- 
ible fluid). Pore sizes and the dimensions of the solid particles are assumed small com- 

pared with the distance over which the kinematic and dynamic characteristics of the 
motion undergo a significant change, and both components of the medium can, therefore, 

be assumed continuous. The dynamics of such a medium (in the absence of a magnetic 
field) was studied in [l - 31. In [4] it was shown, that the Biot equations c23 have the 

widest applicability in the case of harmonic waves. 
Below we use the Biot models and the equations of electromagnetic field, to study the 

wave motion of the given medium in the presence of a constant, homogeneous magnetic 
field’ II. We note the existence of six types of waves, four of them polarized in the plane 
containing the wave vector’ k and the vector II, and the remaining two polarized in the 

direction perpendicular to this plane. We obtain expressions for their phase velocities 
and the coefficients of absorption in the critical case of a weak magnetic field. 

1. Linearized equations of motion of the two-combonent conducting media, have the 
form 

Prr%+ Pis $$+B(vr-vs)=(h+p)graddivUr+ U.i) 

+ +BUr + Q grad div Us - & H x rot hs 

-vs)=QgraddivUr+RgraddivUs-& H x rot hs 

Pn = P1- PI% Ps = ps - PI% P=p,ms/z 

Here v,, vs and U,, Us are the velocity and displacement vectors of the elastic and 
fluid component, respectively, (U, = (I/w) v,, v = 1,2); p1 and p are their respective 
masses per unit volume of the medium, prs is the dynamic coupling coefficient,(pn < 0); 
h, P, Q and R are elastic constants, h, and’hs denote small variations of the magnetio 

field intensity within the wave in the respective components of the medium, Pf-is the 
viscosity of the fluid, m and x denote the porosity and permeability of the eiastic skel- 
eton. When H = Cl ,Eqs (1. i) coincide with the Biot equations. 

Current appearing in each of the components during the motion of the medium across 
the magnetic field. consists of the induced current and the leakage current from the other 

component. Thus we have 

jl = yl (El i- (1 / c)vl X H) -I- jis, js = ‘la (Es i- (l/chx H) - jls W) 

where j,‘and jl denote the currents in the first and second component per unit cross 

787 



788 L.Ia.Kosachevskli 

section of the medium, sll and ?a are the coefficients of electrical conductivity, El and 
&denote the respective induced electric field intensities, c is the velocity of light and 
jn denotes the current leaking from the second component into the first. 

Amount of energy appearing as Joule heat in unit time, is 

w-$+$ 

and the condition that this energy is at minimum for fixed E, and vy , yield 

tll% * - ~a=,,~+~ Es--l+ o 4vs -VI) x H I (1.3) 
Relations (1.2) then become 

J, = .I$, El. &+I++vIxH) +tlr (Esf$vsX H)] (1.4) 

and the vector E can be regarded as the effective electric field strength in a two-com- 
ponent medium. 

The Maxwell’s equations 
i ah, 

rotE,=-TX,,, rot h, = $ Iv, div h “-0 

with (1.4) taken into account yield 

8th 
-=* at C 

'11rot@1x w+qlrot(v,X Ii) + $(I+ -$-)Ahij , qrhl=;l:: 

Eqs. (1.1) and (1.. 5) together form a closed system. We shall seek its solution in the 

form exp (t[(kr) - ot]~ describing the propagation of plane waves, with the wave vector 
k and the frequency o). In addition,( 1.1) and (1.5) can be reduced to the following 

system of algebraic equations : 

uoc [(w+i&)vl +(m-i$) v2] =(h+CL)k(kvl)+~k?vl+Qk(kvd+ W, 

+ (0/41x) H >;: (k x hJ 

= Qk (kvd + Rk (ha) + & H x (k x hz) 

qg+p IrlJc_x h x HI + rlzk x (va x H)] F 0 

Let us choose the coordinate axes in such a manner, that the z-axis is directed along 
the wave vector k, while the vector H lies in the ry-plane. Then the projections of 

(1.6) on these axes are 

[(nl + ir) u - ad lJIx + [ha - W u - hl “9% - aH, I/i& = 0 

[(ya - if) u - ala] vlx + [ (yas + iy) u - cazl vax - eZfU ‘t/iQ = 0 

[(YU + iy) n - El uIu + (~1% - id uvzy + aH, lf$Y = 0 

(71s - fy) uvly + (m + iy) uvpy + eH, fihsu =O, @i,, - rlihsy = 0 

(u + iawl) ht,, + 6th v; [tli (K& - Q’t,) + ?s (zf,vsr, - zi,%,)) = 0 

[(yit + iy) n - El “lr f(Yu--r ‘y) u ypz + aH, ~hlz = 0 

(yn - iy) uvlr + (yss + iy) uupr + *Hz vi& = 0 

(u + Icoq) hi2 + @thH, v; (?l~i~ + ?as,) = 0, Vahsz - Gsz -0 

(1.7) 

(i.8) 
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where P = Pll + pm + 2pa 
pas=L+2P+R+2Q 

L + 2P R 
err = - Q 

pas ’ el¶=pOl, ass=+ E= l!i 
par 

The quantity u = (o / ka)* represents the square of the dimensionless phase velocity. 

The equations obtained can be arranged into two mutually independent groups, (1.7) 
and (1.8), and this implies that two independent classes of the magnetoacoustic waves 
exist. Waves belonging to the first class defined by Eqs. (1.7) are polarized in the zy - 
plane, while the waves of the second class described by (1.8) are polarized in the direc- 

tion perpendicular to the w-plane. 

2. Let us consider the waves belonging to the fust class. Equating the determinant of 
(1.7) to zero, we obtain the following dispersion equation : 

(n’ + w*bW8(~N~ + faq) = cpxA(u)(I’u - Eqs’, + q+, u 8 (4 U’u - 2) (2.1) 

where 

A(u) = (yliyh - ylaa + iy)u’ - (yllusa + yaza,, - 2yuan + iy) u + $1022 - d 
S(u) = (Tllb -TV?+ ir) u - 4 (722 + ir) 

9% 
= uH,s/a, r = rp ~~~~ + h) + ‘la3 (TII + h) - 2~12 (~12 - ir) 

*v=uH;/a, c = T&2+ ?2%1- 21lq2%2 

Eq. (a. 1) is of the fourth degree in U, consequently four types of waves polarized in 
the sy-plane exist. Relations (1.7) yield 

a$ Vi 
(2.2) 

j$@sU--x.)2. 
rru - z1 

lit.&= V@AX = I’zu Vls ’ 
4& firs ht,, 

VI,, = - W(u) H, 

r1u-bl2 
rl= rla (nl+ 8) - ql(n0 - Q), x1= 112%1- Wl¶ 

%I= r2u Vl"' r2= tll(Y22 + ir) - qs(y12- iy), X2=w22-q2$2 

When the magnetic field is weak, $ = $, + $, < 1 and the roots of (2.1) have the 
form 

U(1) = up + rpyuo (1) p&) - 2) 

N (uo(‘) - uo(‘)) (u,(‘) - ~0’~‘) 9 
Ja) = up + %uo (2) (r,,(d -z) 

N (u,(~) - u"w)(uo(2) - uo'4') 

q, 'h 
0) (ruo(4 _ 2) 

+ (uow - uo(l)) (uo(4) (29 1 (2.3) 
- PO 

where u&t), u,(~) and UO@) denote the squares of the dimensionless phase velocities of 
two longitudinal and one transverse wave occurring in the two-component medium in 
the absence of a magnetic field. Quantities u,(t) and PO@) are the roots of the quadratic 
equation A(u) = 0 and uo(‘) and ~0~~) are given by 

uo(3) = E(T22f h) 

rtfrza - m2 + ir* 
uo(3) = - ioq 

For the well conducting media we have oq 4 1, and Formulas (i?. 3) somewhat sim- 
plify to yield 
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“(1) = up + s,, Vu,(‘) - 9 
N (&) - &p) ’ 

@) = *(S) + qx WkP) - Etls’) 
NUp (2.4) 

u(4) %,,rla' 
=--iOrl + ~l*+q2*)(T22-t+) 

The relations (2.2) yield, with the accuracy of up to the order of q, 

Q(4) = 0 (4) __-J &Ml =(), v2p =- =% 
h,,@) 

t vlY (r2a + ir) f/u00 x- 
In the approximation considered,first three waves represent, respectively, two longitudi- 

nal and one transverse wave, modified somewhat by the presence of the magnetic field. 
The fourth wave, in the case when the conductivity of the fluid component is much smal- 
ler than the conductivity of the elastic component, decays rapidly and is related to the 
process of diffusion of the magnetic field in the elastic component. In the opposite, 

limiting case when the conductivity of the fluid is infinite, this wave becomes the Alf- 
ven’s wave for which the following equations hold: 

9% 
JO= - 

h2J4) 

ra+v' %I 
(4) = _ 

V4np (729 + W 
(2.6) 

Neglecting the viscosity (y = 0), we obtain the relations for the Alfven’s waves [S]. 

3. Let us now consider the second class waves. Condition of compatibility of the sys- 
tem (1.8) leads to the following dispersion equation, second degree in u : 

w+ rl0w4) (4+ w =qpu --h2) (3.1) 

This shows that two types of waves exist, polarized in the direction perpendicular to 
the q-plane, and from (1.8) we obtain the following relations for these two waves: 

=qz VGra h,, 
VI*=- 

hu-bt2 

?16 (u) H, ' v2z = l'2u % (3.2) 

When $4 1 , then the roots of (3.1) have the form 

u(s) = &s) 9 &) = r@(4) + 
qz (r@) - 4~~s) 

N (~(‘1 - uJ@) (3.3) 

The root I#) corresponds to the transverse wave, while u(s)to the Alfven’s wave. 

When the medium is a good conductor, n@) coincides with ut4’ and we obtain, with(2.5) 
taken into account, the following vector relation for me Alfven’s waves 

a% L 

v'=-(T22+ i~)~/uo H, 
(3.4) 

4. In conclusion, we shall obtain the coefficients of -absorption for the above waves. 
The ceofficient of absorption X is given in the imaginary part of the wave number 

2=Im-=_ 
a Vu (4.1) 

When y = B/PO < i ,(2.4) yields with the accuracy of up to the principal terms, 
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(4.2) 

where the values of $“) are taken at y = 0. In the other limiting case when ‘Y > 1 we 
have xW = G hlazl + raaan - 2wsla - ~llm + Tl2 - wsz‘d + an*) 

p = L ( PO 
> 

‘In 

a 2p (S11022 - 618') 
, x(3! = 2~p2-rllT22+Tl*~) 

X(4) = !_ 

( 

P ml2 + Ilz2) 0 

1 

‘I. 

a 2 IP? ml2 + VP) + PtlzVZ 

(4.3) 

Thus we see that in the critical‘cases shown above, magnetic field has no effect on the 

coefficients of absorption of the first three waves. Their decay is caused mainly by the 
viscous dissipation. Absorption of the fourth wave depends on the magnetic field, con- 
ductivities of the medium components and of the viscosity of the fluid. Coefficients of 

absorption of the waves polarized perpendicularly to the my -plane, coincide, respectively, 
with ‘xca) and x@). 

The author is obliged to A. G. Kulikovskii for a very useful comment in the proof- 
reading stage. 
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